Tropical volcanic eruptions reduce vegetation net carbon uptake on the Qinghai–Tibet Plateau under background climate conditions

Author:

Yong Zhiwei,Wang Zegen,Xiong Junnan,Tian Jie

Abstract

The vegetation carbon uptake plays an important role in the terrestrial carbon cycle on the Qinghai–Tibet Plateau (QTP), while it is extremely sensitive to the impact of natural external forcings. Until now, there is limited knowledge on the spatial-temporal patterns of vegetation net carbon uptake (VNCU) after the force that caused by tropical volcanic eruptions. Here, we conducted an exhaustive reconstruction of VNCU on the QTP over the last millennium, and used a superposed epoch analysis to characterize the VNCU response of the QTP after the tropical volcanic eruptions. We then further investigated the divergent changes of VNCU response across different elevation gradients and vegetation types, and the impact of teleconnection forcing on VNCU after volcanic eruptions. Within a climatic background, we found that VNCU of the QTP tends to decrease after large volcanic eruptions, lasting until about 3 years, with a maximum decrease value occurring in the following 1 year. The spatial and temporal patterns of the VNCU were mainly driven by the post-eruption climate and moderated by the negative phase trends of El Niño-Southern Oscillation and the Atlantic multidecadal oscillation. In addition, elevation and vegetation types were undeniable driving forces associated with VNCU on QTP. Different water-heat conditions and vegetation types contributed to significant differences in the response and recovery processes of VNCU. Our results emphasized the response and recovery processes of VNCU to volcanic eruptions without the strong anthropogenic forcings, while the influence mechanisms of natural forcing on VNCU should receive more attention.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3