Classification of tomato seedling chilling injury based on chlorophyll fluorescence imaging and DBO-BiLSTM

Author:

Dong Zhenfen,Zhao Jing,Ji Wenwen,Wei Wei,Men Yuheng

Abstract

IntroductionTomatoes are sensitive to low temperatures during their growth process, and low temperatures are one of the main environmental limitations affecting plant growth and development in Northeast China. Chlorophyll fluorescence imaging technology is a powerful tool for evaluating the efficiency of plant photosynthesis, which can detect and reflect the effects that plants are subjected to during the low temperature stress stage, including early chilling injury.MethodsThis article primarily utilizes the chlorophyll fluorescence image set of tomato seedlings, applying the dung beetle optimization (DBO) algorithm to enhance the deep learning bidirectional long short term memory (BiLSTM) model, thereby improving the accuracy of classification prediction for chilling injury in tomatoes. Firstly, the proportion of tomato chilling injury areas in chlorophyll fluorescence images was calculated using a threshold segmentation algorithm to classify tomato cold damage into four categories. Then, the features of each type of cold damage image were filtered using SRCC to extract the data with the highest correlation with cold damage. These data served as the training and testing sample set for the BiLSTM model. Finally, DBO algorithm was applied to enhance the deep learning BiLSTM model, and the DBO-BiLSTM model was proposed to improve the prediction performance of tomato seedling category labels.ResultsThe results showed that the DBO-BiLSTM model optimized by DBO achieved an accuracy, precision, recall, and F1 score with an average of over 95%.DiscussionCompared to the original BiLSTM model, these evaluation parameters improved by 9.09%, 7.02%, 9.16%, and 8.68%, respectively. When compared to the commonly used SVM classification model, the evaluation parameters showed an increase of 6.35%, 7.33%, 6.33%, and 6.5%, respectively. This study was expected to detect early chilling injury through chlorophyll fluorescence imaging, achieve automatic classification and labeling of cold damage data, and lay a research foundation for in-depth research on the cold damage resistance of plants themselves and exploring the application of deep learning classification methods in precision agriculture.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3