Artificial Neural Network for Discrimination and Classification of Tropical Soybean Genotypes of Different Relative Maturity Groups

Author:

Amaral Lígia de Oliveira,Miranda Glauco Vieira,Val Bruno Henrique Pedroso,Silva Alice Pereira,Moitinho Alyce Carla Rodrigues,Unêda-Trevisoli Sandra Helena

Abstract

Soybean has a recognized narrow genetic base that often makes it difficult to visualize available genetic and phenotypic variability and identify superior genotypes during the selection process. However, the phenotypic expression of soybean plants is highly affected by photoperiod and the cultivation of a given variety is performed in the latitude range that presents ideal conditions for its development based on its relative maturity group (RMG) for the optimization of the phenotypic expression of its genotype. Based on the above, this study aimed to evaluate the efficiency of artificial neural networks (ANNs) as a tool for the correct discrimination and classification of tropical soybean genotypes according to their relative maturity group during the population selection process with the aim of optimizing the phenotypic performance of these selected genotypes. For this purpose, three biparental populations were synthesized, one with a wide genetic variability for the RMG character obtained from the hybridization between genitors of maturity groups RMG 5 (Sub-tropical 23° LS) × RMG 9.4 (Tropical 0° LS) and two populations with a narrow variability obtained between genitors RMG 7.3 (Tropical 20° LS) × RMG 9.4 and RMG 5.3 × RMG 6.7, respectively. Criteria for comparing the developed ANN architecture with Fisher’s linear and Anderson’s quadratic parametric discriminant methodologies were applied to the data for the discrimination and classification of the genotypes. ANN showed an apparent error rate of less than 8.16% as well as a low influence of environmental factors, correctly classifying the genotypes in the populations even in cases of reduced genetic variability such as in the RMG 5 × RMG 6 population. In contrast, the discriminant functions were inefficient in correctly classifying the genotypes in the populations with genealogical similarity (RMG 5 × RMG 6) and wide genetic variability, with an error rate of more than 50%. Based on the results of this study, ANN can be used for the discrimination of genotypes in the initial generations of selection in breeding programs for the development of high performance cultivars for wide and reduced photoperiod amplitudes, even with fewer selection environments, more efficiently, and with fewer time and resources applied. As a result of similarity between the parents, ANN can correctly classify genotypes from populations with a narrow genetic base, in addition to pure lines and genotypes with a high degree of inbreeding.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference26 articles.

1. Understanding soybean maturity groups in Brazil: environment, cultivar classification, and stability;Alliprandini;Crop Sci.,2009

2. Aprendizado de máquina e estatístico na discriminação de populações na presença de matrizes de covariâncias heterogêneas e vetores aleatórios não normais multivariados. [These]. Viçosa (MG): Universidade Federal de Viçosa;Carvalho,2019

3. Estabilidade e adaptabilidade de produção de grãos de soja por meio de metodologias tradicionais e redes neurais artificiais;do Carmo Oda;Sci. Agr. Paran.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3