Maize Yield Prediction using Artificial Neural Networks based on a Trial Network Dataset

Author:

Duarte de Souza Paulo Vitor,Pereira de Rezende Leiliane,Pereira Duarte Aildson,Miranda Glauco Vieira

Abstract

The prediction of grain yield is important for sowing, cultivar positioning, crop management, and public policy. This study aims to predict maize productivity by applying an artificial neural network and by building models of multilayer perceptrons (MLPs) using public data and maize experimental networks. The dataset included parameters of climate, soil water balance, and agronomic characteristics from maize hybrids of an experimental network of two agricultural years. The climatic and soil balance water parameters were divided according to the maize plant development stages. Six databases were obtained by combining the imputation of missing data with the agronomic characteristics of the maize hybrids, the climatic parameters/soil water balance, and the complete database with both. Hyper parameterization of the models was obtained using GridSearch and k-fold cross-validation. The models with imputation were more accurate than those without it. The model with climate data/soil water balance and the complete model with imputation presented the smallest errors of 71 kg ha−1. In all the models, cultivars, locations, and their interactions were important, and different climatic conditions had the greatest weight in predicting productivity. It was concluded that the MLP models performed adequately and captured the non-linear effects of the interaction between the environment and maize hybrids. Climatic and soil balance water parameters at different stages of maize plant development explain the productivity of maize hybrids more than the agronomic characteristics of the cultivars.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3