CACPU-Net: Channel attention U-net constrained by point features for crop type mapping

Author:

Bian Yuan,Li LinHui,Jing WeiPeng

Abstract

Crop type mapping is an indispensable topic in the agricultural field and plays an important role in agricultural intelligence. In crop type mapping, most studies focus on time series models. However, in our experimental area, the images of the crop harvest stage can be obtained from single temporal remote sensing images. Only using single temporal data for crop type mapping can reduce the difficulty of dataset production. In addition, the model of single temporal crop type mapping can also extract the spatial features of crops more effectively. In this work, we linked crop type mapping with 2D semantic segmentation and designed CACPU-Net based on single-source and single-temporal autumn Sentinel-2 satellite images. First, we used a shallow convolutional neural network, U-Net, and introduced channel attention mechanism to improve the model’s ability to extract spectral features. Second, we presented the Dice to compute loss together with cross-entropy to mitigate the effects of crop class imbalance. In addition, we designed the CP module to additionally focus on hard-to-classify pixels. Our experiment was conducted on BeiDaHuang YouYi of Heilongjiang Province, which mainly grows rice, corn, soybean, and other economic crops. On the dataset we collected, through the 10-fold cross-validation experiment under the 8:1:1 dataset splitting scheme, our method achieved 93.74% overall accuracy, higher than state-of-the-art models. Compared with the previous model, our improved model has higher classification accuracy on the parcel boundary. This study provides an effective end-to-end method and a new research idea for crop type mapping. The code and the trained model are available on https://github.com/mooneed/CACPU-Net.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference35 articles.

1. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017

2. A high-performance and in-season classification system of field-level crop types using time-series landsat data and a machine learning approach;Cai;Remote Sens. Environ,2018

3. Encoder-decoder with atrous separable convolution for semantic image segmentation;Chen,2018

4. An image is worth 16x16 words: Transformers for image recognition at scale;Dosovitskiy;ArXiv arXiv, 2010.11929,2021

5. The pascal visual object classes challenge: A retrospective;Everingham;Int. J. Comput. Vision,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3