Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery

Author:

Li Yong1,Liu Wenjing1ORCID,Ge Ying1,Yuan Sai1,Zhang Tingxuan1,Liu Xiuhui1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

Abstract

Citrus is an important commercial crop in many areas. The management and planning of citrus growing can be supported by timely and efficient monitoring of citrus-growing regions. Their complex planting structure and the weather are likely to cause problems for extracting citrus-growing regions from remote sensing images. To accurately extract citrus-growing regions, deep learning is employed, because it has a strong feature representation ability and can obtain rich semantic information. A novel model for extracting citrus-growing regions by UNet that incorporates an image pyramid structure is proposed on the basis of the Sentinel-2 satellite imagery. A pyramid-structured encoder, a decoder, and multiscale skip connections are the three main components of the model. Additionally, atrous spatial pyramid pooling is used to prevent information loss and improve the ability to learn spatial features. The experimental results show that the proposed model has the best performance, with the precision, the intersection over union, the recall, and the F1-score reaching 88.96%, 73.22%, 80.55%, and 84.54%, respectively. The extracted citrus-growing regions have regular boundaries and complete parcels. Furthermore, the proposed model has greater overall accuracy, kappa, producer accuracy, and user accuracy than the object-oriented random forest algorithm that is widely applied in various fields. Overall, the proposed method shows a better generalization ability, higher robustness, greater accuracy, and less fragmented extraction results. This research can support the rapid and accurate mapping of large-scale citrus-growing regions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Major Project of Science and Technology of Yunnan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3