MS-Net: a novel lightweight and precise model for plant disease identification

Author:

Quan Siyu,Wang Jiajia,Jia Zhenhong,Yang Mengge,Xu Qiqi

Abstract

The rapid development of image processing technology and the improvement of computing power in recent years have made deep learning one of the main methods for plant disease identification. Currently, many neural network models have shown better performance in plant disease identification. Typically, the performance improvement of the model needs to be achieved by increasing the depth of the network. However, this also increases the computational complexity, memory requirements, and training time, which will be detrimental to the deployment of the model on mobile devices. To address this problem, a novel lightweight convolutional neural network has been proposed for plant disease detection. Skip connections are introduced into the conventional MobileNetV3 network to enrich the input features of the deep network, and the feature fusion weight parameters in the skip connections are optimized using an improved whale optimization algorithm to achieve higher classification accuracy. In addition, the bias loss substitutes the conventional cross-entropy loss to reduce the interference caused by redundant data during the learning process. The proposed model is pre-trained on the plant classification task dataset instead of using the classical ImageNet for pre-training, which further enhances the performance and robustness of the model. The constructed network achieved high performance with fewer parameters, reaching an accuracy of 99.8% on the PlantVillage dataset. Encouragingly, it also achieved a prediction accuracy of 97.8% on an apple leaf disease dataset with a complex outdoor background. The experimental results show that compared with existing advanced plant disease diagnosis models, the proposed model has fewer parameters, higher recognition accuracy, and lower complexity.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3