Artificial Intelligence-Based Drone System for Multiclass Plant Disease Detection Using an Improved Efficient Convolutional Neural Network

Author:

Albattah Waleed,Javed Ali,Nawaz Marriam,Masood Momina,Albahli Saleh

Abstract

The role of agricultural development is very important in the economy of a country. However, the occurrence of several plant diseases is a major hindrance to the growth rate and quality of crops. The exact determination and categorization of crop leaf diseases is a complex and time-required activity due to the occurrence of low contrast information in the input samples. Moreover, the alterations in the size, location, structure of crop diseased portion, and existence of noise and blurriness effect in the input images further complicate the classification task. To solve the problems of existing techniques, a robust drone-based deep learning approach is proposed. More specifically, we have introduced an improved EfficientNetV2-B4 with additional added dense layers at the end of the architecture. The customized EfficientNetV2-B4 calculates the deep key points and classifies them in their related classes by utilizing an end-to-end training architecture. For performance evaluation, a standard dataset, namely, the PlantVillage Kaggle along with the samples captured using a drone is used which is complicated in the aspect of varying image samples with diverse image capturing conditions. We attained the average precision, recall, and accuracy values of 99.63, 99.93, and 99.99%, respectively. The obtained results confirm the robustness of our approach in comparison to other recent techniques and also show less time complexity.

Funder

Qassim University

Publisher

Frontiers Media SA

Subject

Plant Science

Reference68 articles.

1. ToLeD: tomato leaf disease detection using convolution neural network.;Agarwal;Proc. Comput. Sci.,2020

2. Maize leaf disease classification using deep convolutional neural networks.;Ahila Priyadharshini;Neural Comput. Appl.,2019

3. Plants disease phenotyping using quinary patterns as texture descriptor.;Ahmad;KSII Trans. Internet Inf. Syst.,2020

4. Extremely large minibatch sgd: training resnet-50 on imagenet in 15 minutes.;Akiba;arXiv [preprint].,2017

5. Plant disease classification using deep learning;Akshai;Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC),2021

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3