Non-destructive Storage Time Prediction of Newhall Navel Oranges Based on the Characteristics of Rind Oil Glands

Author:

Gao Shumin,Kang Hanwen,An Xiaosong,Cheng Yunjiang,Chen Hong,Chen Yaohui,Li Shanjun

Abstract

How to non-destructively and quickly estimate the storage time of citrus fruit is necessary and urgent for freshness control in the fruit market. As a feasibility study, we present a non-destructive method for storage time prediction of Newhall navel oranges by investigating the characteristics of the rind oil glands in this paper. Through the observation using a digital microscope, the oil glands were divided into three types and the change of their proportions could indicate the rind status as well as the storage time. Images of the rind of the oranges were taken in intervals of 10 days for 40 days, and they were used to train and test the proposed prediction models based on K-Nearest Neighbors (KNN) and deep learning algorithms, respectively. The KNN-based model demonstrated explicit features for storage time prediction based on the gland characteristics and reached a high accuracy of 93.0%, and the deep learning-based model attained an even higher accuracy of 96.0% due to its strong adaptability and robustness. The workflow presented can be readily replicated to develop non-destructive methods to predict the storage time of other types of citrus fruit with similar oil gland characteristics in different storage conditions featuring high efficiency and accuracy.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3