Improved multi-trait prediction of wheat end-product quality traits by integrating NIR-predicted phenotypes

Author:

Azizinia Shiva,Mullan Daniel,Rattey Allan,Godoy Jayfred,Robinson Hannah,Moody David,Forrest Kerrie,Keeble-Gagnere Gabriel,Hayden Matthew J.,Tibbits Josquin FG.,Daetwyler Hans D.

Abstract

Historically, end-product quality testing has been costly and required large flour samples; therefore, it was generally implemented in the late phases of variety development, imposing a huge cost on the breeding effort and effectiveness. High genetic correlations of end-product quality traits with higher throughput and nondestructive testing technologies, such as near-infrared (NIR), could enable early-stage testing and effective selection of these highly valuable traits in a multi-trait genomic prediction model. We studied the impact on prediction accuracy in genomic best linear unbiased prediction (GBLUP) of adding NIR-predicted secondary traits for six end-product quality traits (crumb yellowness, water absorption, texture hardness, flour yield, grain protein, flour swelling volume). Bread wheat lines (1,400–1,900) were measured across 8 years (2012–2019) for six end-product quality traits with standard laboratory assays and with NIR, which were combined to generate predicted data for approximately 27,000 lines. All lines were genotyped with the Infinium™ Wheat Barley 40K BeadChip and imputed using exome sequence data. End-product and NIR phenotypes were genetically correlated (0.5–0.83, except for flour swelling volume 0.19). Prediction accuracies of end-product traits ranged between 0.28 and 0.64 and increased by 30% through the inclusion of NIR-predicted data compared to single-trait analysis. There was a high correlation between the multi-trait prediction accuracy and genetic correlations between end-product and NIR-predicted data (0.69–0.77). Our forward prediction validation revealed a gradual increase in prediction accuracy when adding more years to the multi-trait model. Overall, we achieved genomic prediction accuracy at a level that enables selection for end-product quality traits early in the breeding cycle.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3