Genome-Wide Identification of Tannase Genes and Their Function of Wound Response and Astringent Substances Accumulation in Juglandaceae

Author:

Wang Jianhua,Wang Ketao,Lyu Shiheng,Huang Jianqin,Huang Chunying,Xing Yulin,Wang Yige,Xu Yifan,Li Peipei,Hong Junyan,Xi Jianwei,Si Xiaolin,Ye Hongyu,Li Yan

Abstract

Tannins are important polyphenol compounds with different component proportions in different plant species. The plants in the Juglandaceae are rich in tannins, including condensed tannins and hydrolyzable tannins. In this study, we identified seven tannase genes (TAs) responsible for the tannin metabolism from walnut, pecan, and Chinese hickory, and three nut tree species in the Juglandaceae, which were divided into two groups. The phylogenetic and sequence analysis showed that TA genes and neighboring clade genes (TA-like genes) had similar sequences compared with other carboxylesterase genes, which may be the origin of TA genes produced by tandem repeat. TA genes also indicated higher expressions in leaf than other tissues and were quickly up-regulated at 3 h after leaf injury. During the development of the seed coat, the expression of the synthesis-related gene GGTs and the hydrolase gene TAs was continuously decreased, resulting in the decrease of tannin content in the dry sample of the seed coat of Chinese hickory. However, due to the reduction in water content during the ripening process, the tannin content in fresh sample increased, so the astringent taste was obvious at the mature stage. In addition, the CcGGTs’ expression was higher than CiGGTs in the initiation of development, but CcTAs continued to be down-regulated while CiTA2a and CiTA2b were up-regulated, which may bring about the significant differences in tannin content and astringent taste between Chinese hickory and pecan. These results suggested the crucial role of TAs in wound stress of leaves and astringent ingredient accumulation in seed coats of two nut tree species in the Juglandaceae.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3