Bioformulation of Silk-Based Coating to Preserve and Deliver Rhizobium tropici to Phaseolus vulgaris Under Saline Environments

Author:

Mhada Manal,Zvinavashe Augustine T.,Hazzoumi Zakaria,Zeroual Youssef,Marelli Benedetto,Kouisni Lamfeddal

Abstract

Seed priming has been for a long time an efficient application method of biofertilizers and biocontrol agents. Due to the quick degradation of the priming agents, this technique has been limited to specific immediate uses. With the increase of awareness of the importance of sustainable use of biofertilizers, seed coating has presented a competitive advantage regarding its ability to adhere easily to the seed, preserve the inoculant, and decompose in the soil. This study compared primed Phaseolus vulgaris seeds with Rhizobium tropici and trehalose with coated seeds using a silk solution mixed with R. tropici and trehalose. We represented the effect of priming and seed coating on seed germination and the development of seedlings by evaluating physiological and morphological parameters under different salinity levels (0, 20, 50, and 75 mM). Results showed that germination and morphological parameters have been significantly enhanced by applying R. tropici and trehalose. Seedlings of coated seeds show higher root density than the freshly primed seeds and the control. The physiological response has been evaluated through the stomatal conductance, the chlorophyll content, and the total phenolic compounds. The stability of these physiological traits indicated the role of trehalose in the protection of the photosystems of the plant under low and medium salinity levels. R. tropici and trehalose helped the plant mitigate the negative impact of salt stress on all traits. These findings represent an essential contribution to our understanding of stress responses in coated and primed seeds. This knowledge is essential to the design of coating materials optimized for stressed environments. However, further progress in this area of research must anticipate the development of coatings adapted to different stresses using micro and macro elements, bacteria, and fungi with a significant focus on biopolymers for sustainable agriculture and soil microbiome preservation.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3