Bacterial-Mediated Induced Resistance in Cucumber: Beneficial Effect of the Endophytic Bacterium Serratia plymuthica on the Protection Against Infection by Pythium ultimum

Author:

Benhamou Nicole,Gagné Serge,Le Quéré Dominique,Dehbi Leila

Abstract

The potential of the endophytic bacterium Serratia plymuthica strain R1GC4 in stimulating defense reactions in cucumber (Cucumis sativus) seedlings inoculated with the soilborne pathogen Pythium ultimum was explored at the cellular level. Bacterial treatment prior to Pythium inoculation resulted in less seedling disease development as compared with that in nontreated control plants, in which typical root symptoms were visible by 3 days after inoculation with the pathogen. Histological investigations of root samples revealed striking differences in the extent of plant defense reactions between bacterized and nonbacterized plants. These observations were further confirmed at the ultrastructural level with the demonstration that restriction of fungal colonization to the outermost root tissues of bacterized seedlings correlated with the deposition of enlarged callose-enriched wall appositions at sites of potential pathogen penetration and the accumulation of an osmiophilic material in the colonized areas. Hyphae of the pathogen, surrounded by this electron-opaque material, exhibited considerable changes including cytoplasm disorganization and, in many cases, loss of the protoplasm. However, labeling with the β-1,4-exoglucanase resulted in a regular labeling of Pythium cell walls, even at a time when these walls were entirely coated by the osmiophilic material. This material was also found to infiltrate into the invading hyphae to form either an internal coating of the cell wall or a network of polymorphic droplets in the area previously occupied by the cytoplasm. Cytochemical investigations revealed that callose, pectin, and cellulose appeared in the wall appositions. In addition, glucosides, lipids, and phenolics were detected in the electron-dense aggregates forming the core of most wall appositions. Finally, galactose residues were among the minor polysaccharidic compounds detected in the wall appositions. Evidence is provided in this study showing that treatment with S. plymuthica sensitizes susceptible cucumber plants to react more rapidly and more efficiently to Pythium attack through the formation of physical and chemical barriers at sites of potential fungal entry.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3