Intelligent Fruit Yield Estimation for Orchards Using Deep Learning Based Semantic Segmentation Techniques—A Review

Author:

Maheswari Prabhakar,Raja Purushothaman,Apolo-Apolo Orly Enrique,Pérez-Ruiz Manuel

Abstract

Smart farming employs intelligent systems for every domain of agriculture to obtain sustainable economic growth with the available resources using advanced technologies. Deep Learning (DL) is a sophisticated artificial neural network architecture that provides state-of-the-art results in smart farming applications. One of the main tasks in this domain is yield estimation. Manual yield estimation undergoes many hurdles such as labor-intensive, time-consuming, imprecise results, etc. These issues motivate the development of an intelligent fruit yield estimation system that offers more benefits to the farmers in deciding harvesting, marketing, etc. Semantic segmentation combined with DL adds promising results in fruit detection and localization by performing pixel-based prediction. This paper reviews the different literature employing various techniques for fruit yield estimation using DL-based semantic segmentation architectures. It also discusses the challenging issues that occur during intelligent fruit yield estimation such as sampling, collection, annotation and data augmentation, fruit detection, and counting. Results show that the fruit yield estimation employing DL-based semantic segmentation techniques yields better performance than earlier techniques because of human cognition incorporated into the architecture. Future directions like customization of DL architecture for smart-phone applications to predict the yield, development of more comprehensive model encompassing challenging situations like occlusion, overlapping and illumination variation, etc., were also discussed.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference95 articles.

1. Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV.;Apolo-Apolo;Eur. J. Agron.,2020

2. SegNet: a deep convolutional encoder-decoder architecture for scene segmentation;Badrinarayanan;Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence,2017

3. Deep fruit detection in orchards;Bargoti;Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),2016

4. Image segmentation for fruit detection and yield estimation in apple orchards.;Bargoti;J. Field Rob.,2017

5. Weakly supervised fruit counting for yield estimation using spatial consistency;Bellocchio;Proceedings of the IEEE Robotics and Automation Letters,2019

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3