Estimation of Botanical Composition in Mixed Clover–Grass Fields Using Machine Learning-Based Image Analysis

Author:

Sun Sashuang,Liang Ning,Zuo Zhiyu,Parsons David,Morel Julien,Shi Jiang,Wang Zhao,Luo Letan,Zhao Lin,Fang Hui,He Yong,Zhou Zhenjiang

Abstract

This study aims to provide an effective image analysis method for clover detection and botanical composition (BC) estimation in clover–grass mixture fields. Three transfer learning methods, namely, fine-tuned DeepLab V3+, SegNet, and fully convolutional network-8s (FCN-8s), were utilized to detect clover fractions (on an area basis). The detected clover fraction (CFdetected), together with auxiliary variables, viz., measured clover height (Hclover) and grass height (Hgrass), were used to build multiple linear regression (MLR) and back propagation neural network (BPNN) models for BC estimation. A total of 347 clover–grass images were used to build the estimation model on clover fraction and BC. Of the 347 samples, 226 images were augmented to 904 images for training, 25 were selected for validation, and the remaining 96 samples were used as an independent dataset for testing. Testing results showed that the intersection-over-union (IoU) values based on the DeepLab V3+, SegNet, and FCN-8s were 0.73, 0.57, and 0.60, respectively. The root mean square error (RMSE) values for the three transfer learning methods were 8.5, 10.6, and 10.0%. Subsequently, models based on BPNN and MLR were built to estimate BC, by using either CFdetected only or CFdetected, grass height, and clover height all together. Results showed that BPNN was generally superior to MLR in terms of estimating BC. The BPNN model only using CFdetected had a RMSE of 8.7%. In contrast, the BPNN model using all three variables (CFdetected, Hclover, and Hgrass) as inputs had an RMSE of 6.6%, implying that DeepLab V3+ together with BPNN can provide good estimation of BC and can offer a promising method for improving forage management.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3