MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code

Author:

Li BinORCID,Guo Chenhua

Abstract

Plant point cloud segmentation is an important step in 3D plant phenotype research. Because the stems, leaves, flowers, and other organs of plants are often intertwined and small in size, this makes plant point cloud segmentation more challenging than other segmentation tasks. In this paper, we propose MASPC_Transform, a novel plant point cloud segmentation network base on multi-head attention separation and position code. The proposed MASPC_Transform establishes connections for similar point clouds scattered in different areas of the point cloud space through multiple attention heads. In order to avoid the aggregation of multiple attention heads, we propose a multi-head attention separation loss based on spatial similarity, so that the attention positions of different attention heads can be dispersed as much as possible. In order to reduce the impact of point cloud disorder and irregularity on feature extraction, we propose a new point cloud position coding method, and use the position coding network based on this method in the local and global feature extraction modules of MASPC_Transform. We evaluate our MASPC_Transform on the ROSE_X dataset. Compared with the state-of-the-art approaches, the proposed MASPC_Transform achieved better segmentation results.

Funder

Department of science and technology of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delving into the Potential of Deep Learning Algorithms for Point Cloud Segmentation at Organ Level in Plant Phenotyping;Remote Sensing;2024-09-04

2. Graph Memory Neural Network with Adaptive Message Passing Mechanism;Proceedings of the 2024 8th International Conference on High Performance Compilation, Computing and Communications;2024-06-07

3. Unsupervised shape-aware SOM down-sampling for plant point clouds;ISPRS Journal of Photogrammetry and Remote Sensing;2024-05

4. Deep Learning-Based Plant Organ Segmentation and Phenotyping of Sorghum Plants Using LiDAR Point Cloud;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

5. A Local and Non-Local Features Based Feedback Network on Super-Resolution;Sensors;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3