Selected adjuvants increase the efficacy of foliar biofortification of iodine in bread wheat (Triticum aestivum L.) grain

Author:

Magor Esther,Wilson Matthew Deas,Wong Henri,Cresswell Tom,Sánchez-Palacios José Tonatiuh,Bell Richard William,Penrose Beth

Abstract

Agronomic biofortification of crops is a promising approach that can improve the nutritional value of staple foods by alleviating dietary micronutrient deficiencies. Iodine deficiency is prevalent in many countries, including Australia, but it is not clear what foliar application strategies will be effective for iodine fortification of grain. This study hypothesised that combining adjuvants with iodine in foliar sprays would improve iodine penetration in wheat, leading to more efficient biofortification of grains. The glasshouse experiment included a total of nine treatments, including three reference controls: 1) Water; 2) potassium iodate (KIO3) and 3) potassium chloride (KCl); and a series of six different non-ionic surfactant or oil-based adjuvants: 4) KIO3 + BS1000; 5) KIO3 + Pulse® Penetrant; 6) KIO3 + Uptake®; 7) KIO3 + Hot-Up®; 8) KIO3 + Hasten® and 9) KIO3 + Synerterol® Horti Oil. Wheat was treated at heading, and again during the early milk growth stage. Adding the organosilicon-based adjuvant (Pulse®) to the spray formulation resulted in a significant increase in grain loading of iodine to 1269 µg/kg compared to the non-adjuvant KIO3 control at 231µg/kg, and the water and KCl controls (both 51µg/kg). The second most effective adjuvant was Synerterol® Horti Oil, which increased grain iodine significantly to 450µg/kg. The Uptake®, BS1000, Hasten®, and Hot-Up® adjuvants did not affect grain iodine concentrations relative to the KIO3 control. Importantly, iodine application and the subsequent increase in grain iodine had no significant effects on biomass production and grain yield relative to the controls. These results indicate that adjuvants can play an important role in agronomic biofortification practices, and organosilicon-based products have a great potential to enhance foliar penetration resulting in a higher translocation rate of foliar-applied iodine to grains, which is required to increase the iodine density of staple grains effectively.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference61 articles.

1. ASTM InternationalE1519-13, Standard Terminology Relating to Agricultural Tank Mix Adjuvants2013

2. APVMAGuidelines for the registration of agricultural adjuvant products2022

3. Iodine uptake and distribution in horticultural and fruit tree species;Caffagni;Ital. J. Agron.,2012

4. Fate and bioaccessibility of iodine in food prepared from agronomically biofortified wheat and rice and impact of cofertilization with zinc and selenium;Cakmak;J. Agric. Food Chem.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3