Near-infrared hyperspectral imaging for online measurement of the viability detection of naturally aged watermelon seeds

Author:

Yasmin Jannat,Ahmed Mohammed Raju,Wakholi Collins,Lohumi Santosh,Mukasa Perez,Kim Geonwoo,Kim Juntae,Lee Hoonsoo,Cho Byoung-Kwan

Abstract

The viability status of seeds before sowing is important to farmers as it allows them to make yield predictions. Monitoring the seed quality in a rapid and nondestructive manner may create a perfect solution, especially for industrial sorting applications. However, current offline laboratory-based strategies employed for the monitoring of seed viability are time-consuming and thus cannot satisfy industrial needs where there is a substantial number of seeds to be analyzed. In this study, we describe a prototype online near-infrared (NIR) hyperspectral imaging system that can be used for the rapid detection of seed viability. A wavelength range of 900–1700 nm was employed to obtain spectral images of three different varieties of naturally aged watermelon seed samples. The partial least square discriminant analysis (PLS-DA) model was employed for real-time viability prediction for seed samples moving through a conveyor unit at a speed of 49 mm/sec. A suction unit was further incorporated to develop the online system and it was programmatically controlled to separate the detected viable seeds from nonviable ones. For an external validation sample set showed classification accuracy levels of 91.8%, 80.7%, and 77.8% in relation to viability for the three varieties of watermelon seed with healthy seedling growth. The regression coefficients of the classification model distinguished some chemical differences in viable and nonviable seed which was verified by the chromatographic analysis after the detection of the proposed online system. The results demonstrated that the developed online system with the viability prediction model has the potential to be used in the seed industry for the quality monitoring of seeds.

Funder

Chungnam National University

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3