Detection the internal quality of watermelon seeds based on terahertz imaging technology combined with image smoothing and enhancement algorithm

Author:

Bin Li1ORCID,Jin‐li Yang1,Zhao‐xiang Sun1,Shi‐min Yang1,Aiguo Ouyang1ORCID,Yan‐de Liu1ORCID

Affiliation:

1. Institute of Optical‐Electro‐Mechatronics Technology and Application, National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiao Tong University Nanchang China

Abstract

AbstractThe cultivation processes of watermelon seed are often affected by issues such as empty shells and defects, resulting in significant losses. To obtain high‐quality seeds, the terahertz imaging technology combined with image smoothing and enhancement algorithm was proposed to reduce the noise and non‐obvious features caused by the influence in the imaging process and realize the non‐destructive, efficient, and accurate detection of the internal quality of watermelon seeds. Initially, a terahertz imaging system with a spatial resolution of 0.4 mm was used to acquire images of watermelon seeds with varying levels of fullness. Subsequently, denoising techniques, including Gaussian filtering, median filtering, bilateral filtering, discrete wavelet transformation denoising, wavelet denoising, and principal component analysis denoising, were used to handle the terahertz spectral images of watermelon seeds in the frequency range of 1–1.5 THz, respectively. Image enhancement operations, involving segmented linear gray‐level transformation and fractional‐order differentiation, were performed on the terahertz images of watermelon seeds after denoising. The optimal image processing approach was determined based on defect assessment through threshold segmentation. Finally, the validation was conducted at a spatial resolution of 0.2 mm. The images at a spatial resolution of 0.4 mm were subjected to wavelet denoising and window slicing in segmented linear gray‐level transformation (WS‐SLT) enhancement; the results exhibited the following improvements in defect accuracy compared with untreated THz images. A 7.74% increase in accuracy was observed for empty seeds, along with a 6.29% increase in the defect ratio for defective seeds 1. The defect ratio for intact seeds was 0, and there was no significant difference in defect ratio accuracy for defective seeds 2. At a spatial resolution of 0.2 mm, the average defect ratio error of THz imaging handled by wavelet denoising and WS‐SLT was approximately 5.04%. In conclusion, the terahertz imaging technology coupled with wavelet denoising and WS‐SLT methods can be used to enhance the accuracy of internal defect detection in watermelon seeds, and it provides a technical foundation and reference for assessing watermelon seed fullness.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3