Aboveground biomass estimation of wetland vegetation at the species level using unoccupied aerial vehicle RGB imagery

Author:

Zhou Rui,Yang Chao,Li Enhua,Cai Xiaobin,Wang Xuelei

Abstract

Wetland vegetation biomass is an essential indicator of wetland health, and its estimation has become an active area of research. Zizania latifolia (Z. latifolia) is the dominant species of emergent vegetation in Honghu Wetland, and monitoring its aboveground biomass (AGB) can provide a scientific basis for the protection and restoration of this and other wetlands along the Yangtze River. This study aimed to develop a method for the AGB estimation of Z. latifolia in Honghu Wetland using high-resolution RGB imagery acquired from an unoccupied aerial vehicle (UAV). The spatial distribution of Z. latifolia was first extracted through an object-based classification method using the field survey data and UAV RGB imagery. Linear, quadratic, exponential and back propagation neural network (BPNN) models were constructed based on 17 vegetation indices calculated from RGB images to invert the AGB. The results showed that: (1) The visible vegetation indices were significantly correlated with the AGB of Z. latifolia. The absolute value of the correlation coefficient between the AGB and CIVE was 0.87, followed by ExG (0.866) and COM2 (0.837). (2) Among the linear, quadratic, and exponential models, the quadric model based on CIVE had the highest inversion accuracy, with a validation R2 of 0.37, RMSE and MAE of 853.76 g/m2 and 671.28 g/m2, respectively. (3) The BPNN model constructed with eight factors correlated with the AGB had the best inversion effect, with a validation R2 of 0.68, RMSE and MAE of 732.88 g/m2 and 583.18 g/m2, respectively. ​Compared to the quadratic model constructed by CIVE, the BPNN model achieved better results, with a reduction of 120.88 g/m2 in RMSE and 88.10 g/m2 in MAE. This study indicates that using UAV-based RGB images and the BPNN model provides an effective and accurate technique for the AGB estimation of dominant wetland species, making it possible to efficiently and dynamically monitor wetland vegetation cost-effectively.

Funder

Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3