YOLOV5-CBAM-C3TR: an optimized model based on transformer module and attention mechanism for apple leaf disease detection

Author:

Lv Meng,Su Wen-Hao

Abstract

Apple trees face various challenges during cultivation. Apple leaves, as the key part of the apple tree for photosynthesis, occupy most of the area of the tree. Diseases of the leaves can hinder the healthy growth of trees and cause huge economic losses to fruit growers. The prerequisite for precise control of apple leaf diseases is the timely and accurate detection of different diseases on apple leaves. Traditional methods relying on manual detection have problems such as limited accuracy and slow speed. In this study, both the attention mechanism and the module containing the transformer encoder were innovatively introduced into YOLOV5, resulting in YOLOV5-CBAM-C3TR for apple leaf disease detection. The datasets used in this experiment were uniformly RGB images. To better evaluate the effectiveness of YOLOV5-CBAM-C3TR, the model was compared with different target detection models such as SSD, YOLOV3, YOLOV4, and YOLOV5. The results showed that YOLOV5-CBAM-C3TR achieved mAP@0.5, precision, and recall of 73.4%, 70.9%, and 69.5% for three apple leaf diseases including Alternaria blotch, Grey spot, and Rust. Compared with the original model YOLOV5, the mAP 0.5increased by 8.25% with a small change in the number of parameters. In addition, YOLOV5-CBAM-C3TR can achieve an average accuracy of 92.4% in detecting 208 randomly selected apple leaf disease samples. Notably, YOLOV5-CBAM-C3TR achieved 93.1% and 89.6% accuracy in detecting two very similar diseases including Alternaria Blotch and Grey Spot, respectively. The YOLOV5-CBAM-C3TR model proposed in this paper has been applied to the detection of apple leaf diseases for the first time, and also showed strong recognition ability in identifying similar diseases, which is expected to promote the further development of disease detection technology.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3