Combined analysis of transcriptome and metabolome reveals that sugar, lipid, and phenylpropane metabolism are essential for male fertility in temperature-induced male sterile rice

Author:

Sun Yujun,Fu Ming,Ang Yina,Zhu Lan,Wei Linan,He Ying,Zeng Hanlai

Abstract

Photoperiod- and thermosensitive genic male sterility (PTGMS) rice is a vital germplasm resource consisting of two-line hybrid rice in which light and temperature strictly control their fertility changes. Variable environmental conditions present huge risks to the two-lines hybrid seed production. Explaining the regulatory mechanism of male fertility in rice PTGMS lines is an essential prerequisite to ensuring food security production. A group of near-isogenic lines (NILs) of a rice PTGMS line unique to this research group was used for this study. These lines have the same genetic background and regulate male fertility by responding to different temperature changes. Transcriptomic analysis revealed that 315 upregulated genes and 391 regulated genes regulated male fertility in response to temperature changes, and differentially expressed genes (DEGs) were mainly characterized in enrichment analysis as having roles in the metabolic pathways of sugar, lipid and phenylpropanoid. Electron microscopy analysis revealed that a lack of starch accumulation in sterile pollen grains induced by high temperature, with an abnormal exine development and a lack of inner pollen grains. Defective processes for sporopollenin synthesis, sporopollenin transport and pollen wall formation in sterile anthers were verified using qPCR. Targeted metabolomics analysis revealed that most lipids (phospholipids, sphingolipids and fatty acids) and flavonoids (flavones and flavanones) were upregulated in fertile anthers and involved in pollen wall development and male fertility formation, while lignin G units and C-type lignin were the major contributors to pollen wall development. The coding genes for trehalose 6-phosphate phosphatase, beta-1,3-glucanase, phospholipase D and 4-coumarate-CoA ligase are considered essential regulators in the process of male fertility formation. In conclusion, our results indicated that the expression of critical genes and accumulation of metabolites in the metabolism of sugar, lipid, and phenylpropanoid are essential for male fertility formation. The results provide new insights for addressing the negative effects of environmental variation on two-line hybrid rice production.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3