Identification of plant leaf diseases by deep learning based on channel attention and channel pruning

Author:

Chen Riyao,Qi Haixia,Liang Yu,Yang Mingchao

Abstract

Plant diseases cause significant economic losses and food security in agriculture each year, with the critical path to reducing losses being accurate identification and timely diagnosis of plant diseases. Currently, deep neural networks have been extensively applied in plant disease identification, but such approaches still suffer from low identification accuracy and numerous parameters. Hence, this paper proposes a model combining channel attention and channel pruning called CACPNET, suitable for disease identification of common species. The channel attention mechanism adopts a local cross-channel strategy without dimensionality reduction, which is inserted into a ResNet-18-based model that combines global average pooling with global max pooling to effectively improve the features’ extracting ability of plant leaf diseases. Based on the model’s optimum feature extraction condition, unimportant channels are removed to reduce the model’s parameters and complexity via the L1-norm channel weight and local compression ratio. The accuracy of CACPNET on the public dataset PlantVillage reaches 99.7% and achieves 97.7% on the local peanut leaf disease dataset. Compared with the base ResNet-18 model, the floating point operations (FLOPs) decreased by 30.35%, the parameters by 57.97%, the model size by 57.85%, and the GPU RAM requirements by 8.3%. Additionally, CACPNET outperforms current models considering inference time and throughput, reaching 22.8 ms/frame and 75.5 frames/s, respectively. The results outline that CACPNET is appealing for deployment on edge devices to improve the efficiency of precision agriculture in plant disease detection.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3