LFMNet: a lightweight model for identifying leaf diseases of maize with high similarity

Author:

Hu Jian,Jiang Xinhua,Gao Julin,Yu Xiaofang

Abstract

Maize leaf diseases significantly impact yield and quality. However, recognizing these diseases from images taken in natural environments is challenging due to complex backgrounds and high similarity of disease spots between classes.This study proposes a lightweight multi-level attention fusion network (LFMNet) which can identify maize leaf diseases with high similarity in natural environment. The main components of LFMNet are PMFFM and MAttion blocks, with three key improvements relative to existing essential blocks. First, it improves the adaptability to the change of maize leaf disease scale through the dense connection of partial convolution with different expansion rates and reduces the parameters at the same time. The second improvement is that it replaces a adaptable pooling kernel according to the size of the input feature map on the original PPA, and the convolution layer to reshape to enhance the feature extraction of maize leaves under complex background. The third improvement is that it replaces different pooling kernels to obtain features of different scales based on GMDC and generate feature weighting matrix to enhance important regional features. Experimental results show that the accuracy of the LFMNet model on the test dataset reaches 94.12%, which is better than the existing heavyweight networks, such as ResNet50 and Inception v3, and lightweight networks such as DenseNet 121,MobileNet(V3-large) and ShuffleNet V2. The number of parameters is only 0.88m, which is better than the current mainstream lightweight network. It is also effective to identify the disease types with similar disease spots in leaves.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3