Carbon Source Reduction Postpones Autumn Leaf Senescence in a Widespread Deciduous Tree

Author:

Maschler Julia,Keller Jenna,Bialic-Murphy Lalasia,Zohner Constantin M.,Crowther Thomas W.

Abstract

The growing-season length of temperate and boreal trees has a strong effect on the global carbon cycle. Yet, a poor understanding of the drivers of phenological processes, such as autumn leaf senescence in deciduous trees, limits our capacity to estimate growing-season lengths under climate change. While temperature has been shown to be an important driver of autumn leaf senescence, carbon source–sink dynamics have been proposed as a mechanism that could help explain variation of this important process. According to the carbon sink limitation hypothesis, senescence is regulated by the interplay between plant carbon source and sink dynamics, so that senescence occurs later upon low carbon inputs (source) and earlier upon low carbon demand (sink). Here, we manipulated carbon source–sink dynamics in birch saplings (Betula pendula) to test the relevance of carbon sink limitation for autumn leaf senescence and photosynthetic decline in a widespread deciduous tree. Specifically, we conducted a gradient of leaf and bud removal treatments and monitored the effects on autumnal declines in net photosynthesis and the timing of leaf senescence. In line with the carbon sink limitation hypothesis, we observed that leaf removal tended to increase total leaf-level autumn photosynthesis and delayed the timing of senescence. Conversely, we did not observe an effect of bud removal on either photosynthesis or senescence, which was likely caused by the fact that our bud removal treatment did not considerably affect the plant carbon sink. While we cannot fully rule out that the observed effect of leaf removal was influenced by possible treatment-level differences in leaf age or soil resource availability, our results provide support for the hypothesis of carbon sink limitation as a driver of growing-season length and move the scientific field closer to narrowing the uncertainty in climate change predictions.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3