NTR1 is involved in heat stress tolerance through mediating expression regulation and alternative splicing of heat stress genes in Arabidopsis

Author:

He Lei,Wu Qi,Jin Ye,Fan Ye,Shi Huazhong,Wang Yizhong,Yang Wannian

Abstract

As a common adverse environmental factor, heat stress (HS) not only drastically changes the plant transcriptome at the transcription level but also increases alternative splicing (AS), especially intron retention (IR) events. However, the exact mechanisms are not yet well understood. Here, we reported that NTC-related protein 1 (NTR1), which acts as an accessory component for spliceosome disassembly, is necessary for this process. The mutants of NTR1, both the T-DNA insertion and the point mutation identified through ethyl methanesulfonate (EMS) mutagenesis screening, are vulnerable to HS, indicating that NTR1 is essential for plant HS tolerance. At the molecular level, genes of response to heat and response to temperature stimulus are highly enriched among those of heat-induced but less-expressed ntr1 mutants. Moreover, a large portion of HS response (HSR) genes such as heat shock transcription factors (HSFs) and heat shock proteins (HSPs) are less induced by heat treatment, and more AS events, especially IR events, were found in heat-treated ntr1 mutants. Furthermore, HS suppressed the expression of NTR1 and NTR1-associated complex components. Thus, it is very likely that upon HS, the plant reduces the expression of the NTR1-associated complex to fulfill the fast demands for transcription of HSR genes such as HSFs and HSPs, which in turn results in the accumulation of improperly spliced especially IR products and eventually causes harm to plants.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3