PDSE-Lite: lightweight framework for plant disease severity estimation based on Convolutional Autoencoder and Few-Shot Learning

Author:

Bedi Punam,Gole Pushkar,Marwaha Sudeep

Abstract

Plant disease diagnosis with estimation of disease severity at early stages still remains a significant research challenge in agriculture. It is helpful in diagnosing plant diseases at the earliest so that timely action can be taken for curing the disease. Existing studies often rely on labor-intensive manually annotated large datasets for disease severity estimation. In order to conquer this problem, a lightweight framework named “PDSE-Lite” based on Convolutional Autoencoder (CAE) and Few-Shot Learning (FSL) is proposed in this manuscript for plant disease severity estimation with few training instances. The PDSE-Lite framework is designed and developed in two stages. In first stage, a lightweight CAE model is built and trained to reconstruct leaf images from original leaf images with minimal reconstruction loss. In subsequent stage, pretrained layers of the CAE model built in the first stage are utilized to develop the image classification and segmentation models, which are then trained using FSL. By leveraging FSL, the proposed framework requires only a few annotated instances for training, which significantly reduces the human efforts required for data annotation. Disease severity is then calculated by determining the percentage of diseased leaf pixels obtained through segmentation out of the total leaf pixels. The PDSE-Lite framework’s performance is evaluated on Apple-Tree-Leaf-Disease-Segmentation (ATLDS) dataset. However, the proposed framework can identify any plant disease and quantify the severity of identified diseases. Experimental results reveal that the PDSE-Lite framework can accurately detect healthy and four types of apple tree diseases as well as precisely segment the diseased area from leaf images by using only two training samples from each class of the ATLDS dataset. Furthermore, the PDSE-Lite framework’s performance is compared with existing state-of-the-art techniques, and it is found that this framework outperformed these approaches. The proposed framework’s applicability is further verified by statistical hypothesis testing using Student t-test. The results obtained from this test confirm that the proposed framework can precisely estimate the plant disease severity with a confidence interval of 99%. Hence, by reducing the reliance on large-scale manual data annotation, the proposed framework offers a promising solution for early-stage plant disease diagnosis and severity estimation.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Segmentation of Leaf Diseases in Cotton Plants Using U-Net and a MobileNetV2 as Encoder;2024 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3