1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. Fast and accurate detection and classification of plant diseases;Al-Hiary;International Journal of Computer Applications,2011
3. Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A., 2018. Meta-learning with differentiable closed-form solvers, arXiv preprint arXiv:1805.08136.
4. Bredin, H., 2017. Tristounet: triplet loss for speaker turn embedding. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 5430–5434.
5. A closer look at few-shot classification;Chen;CoRR,2019