Leaf disease image retrieval with object detection and deep metric learning

Author:

Peng Yingshu,Wang Yi

Abstract

Rapid identification of plant diseases is essential for effective mitigation and control of their influence on plants. For plant disease automatic identification, classification of plant leaf images based on deep learning algorithms is currently the most accurate and popular method. Existing methods rely on the collection of large amounts of image annotation data and cannot flexibly adjust recognition categories, whereas we develop a new image retrieval system for automated detection, localization, and identification of individual leaf disease in an open setting, namely, where newly added disease types can be identified without retraining. In this paper, we first optimize the YOLOv5 algorithm, enhancing recognition ability in small objects, which helps to extract leaf objects more accurately; secondly, integrating classification recognition with metric learning, jointly learning categorizing images and similarity measurements, thus, capitalizing on prediction ability of available image classification models; and finally, constructing an efficient and nimble image retrieval system to quickly determine leaf disease type. We demonstrate detailed experimental results on three publicly available leaf disease datasets and prove the effectiveness of our system. This work lays the groundwork for promoting disease surveillance of plants applicable to intelligent agriculture and to crop research such as nutrition diagnosis, health status surveillance, and more.

Funder

Doctorate Fellowship Foundation of Nanjing Forestry University

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Frontiers Media SA

Subject

Plant Science

Reference39 articles.

1. Plant diseases recognition on images using convolutional neural networks: A systematic review;Abade;Comput. Electr. Agric.,2021

2. Maize leaf disease classification using deep convolutional neural networks;Ahila Priyadharshini;Neural Comput. Appl.,2019

3. Towards Open Set Deep Networks;Bendale;2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).,2016

4. Algorithms for hyper-parameter optimization;Bergstra,2011

5. Deep learning on mobile and embedded devices: state-of-the-art, challenges, and future directions;Chen;ACM Comput. Surv.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3