YOLO-Based Phenotyping of Apple Blotch Disease (Diplocarpon coronariae) in Genetic Resources after Artificial Inoculation

Author:

Reim Stefanie1ORCID,Richter Sophie1,Leonhardt Oskar1,Maß Virginia2ORCID,Wöhner Thomas Wolfgang1

Affiliation:

1. Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Pillnitzer Platz 3a, 01326 Dresden, Germany

2. Leibniz Institute for Agricultural Engineering and Bioeconomy, Department Horticultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany

Abstract

Phenotyping of genetic resources is an important prerequisite for the selection of resistant varieties in breeding programs and research. Computer vision techniques have proven to be a useful tool for digital phenotyping of diseases of interest. One pathogen that is increasingly observed in Europe is Diplocarpon coronariae, which causes apple blotch disease. In this study, a high-throughput phenotyping method was established to evaluate genetic apple resources for susceptibility to D. coronariae. For this purpose, inoculation trials with D. coronariae were performed in a laboratory and images of infested leaves were taken 7, 9 and 13 days post inoculation. A pre-trained YOLOv5s model was chosen to establish the model, which was trained with an image dataset of 927 RGB images. The images had a size of 768 × 768 pixels and were divided into 738 annotated training images, 78 validation images and 111 background images without symptoms. The accuracy of symptom prediction with the trained model was 95%. These results indicate that our model can accurately and efficiently detect spots with acervuli on detached apple leaves. Object detection can therefore be used for digital phenotyping of detached leaf assays to assess the susceptibility to D. coronariae in a laboratory.

Funder

Deutsche Bundesstiftung Umwelt

Deutsche Genbank Obst

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3