Identification and expression analysis of the lipid phosphate phosphatases gene family reveal their involvement in abiotic stress response in kiwifruit

Author:

Yang Yaming,Chen Lijuan,Su Gen,Liu Fangfang,Zeng Qiang,Li Rui,Cha Guili,Liu Cuihua,Xing Libo,Ren Xiaolin,Ding Yuduan

Abstract

Lipid phosphate phosphatases (LPPs) are a key enzyme in the production and degradation of phosphatidic acid (PA), which plays an important role in plant growth, development, stress resistance and plant hormone response. Thus far, little is known about the LPP family genes in kiwifruit (Actinidia spp.). According to this study, 7 members in the AcLPP family were identified from the whole genome of kiwifruit, the subcellular localization predictions were mainly on the plasma membrane. Chromosomal localization analysis showed that the AcLPP genes were unevenly distributed on 5 chromosomes, it was determined to have undergone strong purifying selection pressure. There were 5 duplicate gene pairs and all underwent segmental duplication events. The LPP genes of kiwifruit were conserved when compared with other plants, especially in terms of evolutionary relationships, conserved motifs, protein sequences, and gene structures. Cis-regulatory elements mainly included hormone response elements and abiotic response elements. Functional annotation of GO revealed that AcLPP genes were closely related to phosphatase/hydrolase activity, phosphorus metabolism and dephosphorylation. AcLPP genes family were predicted to be targets of miRNA. Transcript level analysis revealed that the AcLPP family played diverse functions in different tissues and during growth, development, and postharvest storage stages. qPCR analysis showed that the members of AcLPP gene family might be regulated by ETH, ABA, GA3, and IAA hormone signals. The family members were regulated by the stress of salt stress, osmotic stress, cold stress, and heat stress. These results would provide a basis and reference for studying the agricultural characteristics of kiwifruit and improving its stress resistance.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3