Anatomical and Transcriptomic Studies of the Coleorhiza Reveal the Importance of This Tissue in Regulating Dormancy in Barley

Author:

Barrero José M.1,Talbot Mark J.1,White Rosemary G.1,Jacobsen John V.1,Gubler Frank1

Affiliation:

1. Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia

Abstract

AbstractThe decay of seed dormancy during after-ripening is not well understood, but elucidation of the mechanisms involved may be important for developing strategies for modifying dormancy in crop species and, for example, addressing the problem of preharvest sprouting in cereals. We have studied the germination characteristics of barley (Hordeum vulgare ‘Betzes’) embryos, including a description of anatomical changes in the coleorhiza and the enclosed seminal roots. The changes that occur correlate with abscisic acid (ABA) contents of embryo tissues. To understand the molecular mechanisms involved in dormancy loss, we compared the transcriptome of dormant and after-ripened barley embryos using a tissue-specific microarray approach. Our results indicate that in the coleorhiza, ABA catabolism is promoted and ABA sensitivity is reduced and that this is associated with differential regulation by after-ripening of ABA 8′-hydroxylase and of the LIPID PHOSPHATE PHOSPHATASE gene family and ABI3-INTERACTING PROTEIN2, respectively. We also identified other processes, including jasmonate responses, cell wall modification, nitrate and nitrite reduction, mRNA stability, and blue light sensitivity, that were affected by after-ripening in the coleorhiza that may be downstream of ABA signaling. Based on these results, we propose that the coleorhiza plays a major role in causing dormancy by acting as a barrier to root emergence and that after-ripening potentiates molecular changes related to ABA metabolism and sensitivity that ultimately lead to degradation of the coleorhiza, root emergence, and germination.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3