Creeping Bentgrass Yield Prediction With Machine Learning Models

Author:

Zhou Qiyu,Soldat Douglas J.

Abstract

Nitrogen is the most limiting nutrient for turfgrass growth. Instead of pursuing the maximum yield, most turfgrass managers use nitrogen (N) to maintain a sub-maximal growth rate. Few tools or soil tests exist to help managers guide N fertilizer decisions. Turf growth prediction models have the potential to be useful, but the currently existing turf growth prediction model only takes temperature into account, limiting its accuracy. This study developed machine-learning-based turf growth models using the random forest (RF) algorithm to estimate short-term turfgrass clipping yield. To build the RF model, a large set of variables were extracted as predictors including the 7-day weather, traffic intensity, soil moisture content, N fertilization rate, and the normalized difference red edge (NDRE) vegetation index. In this study, the data were collected from two putting greens where the turfgrass received 0 to 1,800 round/week traffic rates, various irrigation rates to maintain the soil moisture content between 9 and 29%, and N fertilization rates of 0 to 17.5 kg ha–1 applied biweekly. The RF model agreed with the actual clipping yield collected from the experimental results. The temperature and relative humidity were the most important weather factors. Including NDRE improved the prediction accuracy of the model. The highest coefficient of determination (R2) of the RF model was 0.64 for the training dataset and was 0.47 for the testing data set upon the evaluation of the model. This represented a large improvement over the existing growth prediction model (R2 = 0.01). However, the machine-learning models created were not able to accurately predict the clipping production at other locations. Individual golf courses can create customized growth prediction models using clipping volume to eliminate the deviation caused by temporal and spatial variability. Overall, this study demonstrated the feasibility of creating machine-learning-based yield prediction models that may be able to guide N fertilization decisions on golf course putting greens and presumably other turfgrass areas.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3