Leveraging deep learning for dollar spot detection and quantification in turfgrass

Author:

Kitchin Elisabeth C. A.1ORCID,Sneed Henry J.2ORCID,McCall David S.1ORCID

Affiliation:

1. School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA

2. Department of Computer Sciences North Carolina State University Raleigh North Carolina USA

Abstract

AbstractThis study evaluates the effectiveness of fine‐tuning a semantic segmentation model to identify and quantify dollar spot in turfgrasses, the most extensively managed and researched disease of turfgrasses worldwide. Using the DeepLabV3+ model, recognized for its capability to segment complex shapes and integrate multi‐scale contextual information, the research leveraged a diverse dataset comprising various turfgrass species, disease stages, and lighting conditions to ensure robust model training. The trained model is able to identify and segment disease instances accurately and precisely, and the results indicate the potential for model‐based assessment to outperform traditional visual assessment methods in speed, accuracy, and consistency. The development of deep learning models on extensive datasets like ImageNet requires significant computational resources. However, by fine‐tuning a pretrained semantic segmentation model, we adapted it for disease segmentation using only a standard personal computer's graphics processing unit. This approach not only conserves resources but also highlights the practicality of deploying advanced deep learning applications in turfgrass pathology with limited computational capacity. The proposed model provides a new tool for turfgrass researchers and professionals to rapidly and accurately quantify this important disease under real‐world growing conditions. Additionally, the findings suggest the potential to apply deep learning algorithms to other turfgrass diseases to support data‐driven decisions. This could enhance disease management practices and improve decision‐making processes for fungicidal treatments, thereby improving the economic and environmental sustainability of turfgrass management.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3