Yield of summer maize hybrids with different growth duration determined by light and temperature resource use efficiency from silking to physiological maturity stage

Author:

Zhao Jiyu,Ren Baizhao,Zhao Bin,Liu Peng,Zhang Jiwang

Abstract

In order to explore the physiological mechanism of different yield of summer maize (Zea mays L.) hybrids with different growth duration, a field experiment was conducted to study the growth stage, leaf photosynthetic characteristics, dry matter accumulation (DMA), transport and distribution characteristics and yield of the early maturity hybrid Denghai 518 (DH518) and the mid-late maturity hybrid Denghai 605 (DH605) from 2017 to 2021. The results showed that the yield of DH605 was significantly higher than that of DH518. The growth period of DH518 was 7-10 days shorter and the days of the growth stage of the sowing-silking stage (R1) were 5-6 days shorter compared to that of DH605. The contribution to grain dry matter by leaf and stalk dry matter remobilization (DMRC) of DH518 was significantly higher than that of DH605. There was a significant negative correlation between pre-silking growth days and harvest index (HI). The 13C distribution to grains of DH518 was significantly higher than that of DH605, and the HI and the corresponding contribution of HI to yield was also higher than that of DH605. The light and temperature resource use efficiency from silking to physiological maturity stage of DH605 was significantly higher than that of DH518. The yield per GDD of DH605 increased by 7.25% than that of DH518. At post-silking, the duration of higher leaf area index (DLAI) (>56 days) and active photosynthesis duration (APD) (>50 days) of DH605 were longer compared with that of DH518, and the average plant growth rate was 7.15% higher than that of DH518, which significantly increased the DMA of DH605. Therefore, the significant reduction of DH518 yield compared with DH605 was not due to the shortening of the growth stage of sowing-R1, but the lower light and temperature resource use efficiency from silking to physiological maturity stage.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3