Stem Reserve Mobilisation Supports Wheat-Grain Filling Under Heat Stress

Author:

Blum A,Sinmena B,Mayer J,Golan G,Shpiler L

Abstract

The grain filling of wheat (Triticum aestivum L.) is seriously impaired by heat stress due to reductions in current leaf and ear photosynthesis at high temperatures. An alternative source of carbon for grain filling is stored stem reserves. Two spring wheat cultivars (V5 and V2183) of very similar phenology and plant stature, which had previously been found to differ in grain shrivelling under drought and heat stress conditions in the field, were used to evaluate the hypothesis that the mobilisation of stored stem reserves into the growing grain is an important source of carbon for supporting grain filling under heat stress. In two experiments in Israel (1990 and 1991), the rates of stem dry matter (DM) and stem total non-structural carbohydrates (TNC) loss, grain growth and leaf senescence were monitored under optimal (control) and high (stressed) temperatures in the glasshouse (1990) and the growth chamber (1991). Cultivar V5 always sustained a smaller reduction in grain dry weight under heat stress, than V2183. Irrespective of temperature, V5 had a higher stem DM and TNC content at the onset of grain filling, greater depletion of stem dry matter (or TNC) during grain filling, and longer duration of grain filling, than V2183. During grain filling V5 generally exported about two to three times more DM from the stems than V2183, under both non-stressed and stressed conditions. On the other hand, V5 was more heat-susceptible than V2183 in terms of leaf longevity, in vivo chlorophyll stability and grain abortion under heat stress. In a third experiment (1992) five cultivars (including V5 and V2183) were subjected to chemical desiccation (0.3% potassium iodide) of the canopy in the field in order to destroy the photosynthetic source ofthe plant after anthesis. The same cultivars were subjected to heat stress (35/25�C) or non-stressed (25/15�C) conditions after anthesis in the growth chamber. It was found that grain dry weight reduction by chemical desiccation was highly correlated with grain dry weight reduction by heat stress (r2 = 0.89). Therefore, the superior capacity of V5 for grain filling from mobilised stem reserves is a consti- tutive trait which supports grain filling under heat stress which can be tested for by chemical desiccation of plants under non-stressed conditions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3