Transcriptome Analysis of Melocactus glaucescens (Cactaceae) Reveals Metabolic Changes During in vitro Shoot Organogenesis Induction

Author:

Torres-Silva Gabriela,Correia Ludmila Nayara Freitas,Batista Diego Silva,Koehler Andréa Dias,Resende Sheila Vitória,Romanel Elisson,Cassol Daniela,Almeida Ana Maria Rocha,Strickler Susan R.,Specht Chelsea Dvorak,Otoni Wagner Campos

Abstract

Melocactus glaucescens is an endangered cactus highly valued for its ornamental properties. In vitro shoot production of this species provides a sustainable alternative to overharvesting from the wild; however, its propagation could be improved if the genetic regulation underlying its developmental processes were known. The present study generated de novo transcriptome data, describing in vitro shoot organogenesis induction in M. glaucescens. Total RNA was extracted from explants before (control) and after shoot organogenesis induction (treated). A total of 14,478 unigenes (average length, 520 bases) were obtained using Illumina HiSeq 3000 (Illumina Inc., San Diego, CA, USA) sequencing and transcriptome assembly. Filtering for differential expression yielded 2,058 unigenes. Pairwise comparison of treated vs. control genes revealed that 1,241 (60.3%) unigenes exhibited no significant change, 226 (11%) were downregulated, and 591 (28.7%) were upregulated. Based on database analysis, more transcription factor families and unigenes appeared to be upregulated in the treated samples than in controls. Expression of WOUND INDUCED DEDIFFERENTIATION 1 (WIND1) and CALMODULIN (CaM) genes, both of which were upregulated in treated samples, was further validated by real-time quantitative PCR (RT-qPCR). Differences in gene expression patterns between control and treated samples indicate substantial changes in the primary and secondary metabolism of M. glaucescens after the induction of shoot organogenesis. These results help to clarify the molecular genetics and functional genomic aspects underlying propagation in the Cactaceae family.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference76 articles.

1. AndrewsS. FastQC: a quality control tool for high throughput sequence data [Internet]2010

2. Genome scale transcriptome analysis of shoot organogenesis in Populus;Bao;BMC Plant Biol.,2009

3. Light quality in plant tissue culture: does it matter?;Batista;In Vitro Cell Dev. Biol. Plant,2018

4. Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis;Bencivega;Dev. Cell,2016

5. Trimmomatic: a flexible trimmer for Illumina sequence data;Bolger;Bioinformatics,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3