An efficient Agrobacterium-mediated transient transformation system and its application in gene function elucidation in Paeonia lactiflora Pall

Author:

Guan Shixin,Kang Xuening,Ge Jiayuan,Fei Riwen,Duan Siyang,Sun Xiaomei

Abstract

Paeonia lactiflora Pall. is known as the king of herbaceous flowers with high ornamental and precious medicinal value. However, the lack of a stable genetic transformation system has greatly affected the research of gene function in P. lactiflora. The Agrobacterium-mediated transient gene expression is a powerful tool for the characterization of gene function in plants. In this study, the seedlings of P. lactiflora were used as the transformation receptor materials, and the efficient transient transformation system with a GUS reporter gene was successfully established by Agrobacterium harboring pCAMBIA1301. To optimize the system, we investigated the effects of germination time, Agrobacterium cell density, infection time, acetosyringone (AS) concentration, co-culture time, negative pressure intensity, Tween-20 concentration and different receptor materials on the transient transformation efficiency of P. lactiflora. The results showed that the highest transient transformation efficiency (93.3%) could be obtained when seedlings in 2-3 cm bud length were subjected to 12 h infection of resuspension solution comprising 1.2 OD600Agrobacterium, 200 μM AS and 0.01% Tween-20 under 10 of negative pressure intensity followed by 3 days of co-culture in darkness condition. This method is more suitable for the study of gene function in P. lactiflora. Subsequently, stress resistance genes PlGPAT, PlDHN2 and PlHD-Zip were used to verify the effectiveness of this transformation system. These results can provide critical information for identification of key genes in non-model plants, such as P. lactiflora, and promote the development of molecular biology research for P. lactiflora.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3