Transcriptional regulatory cascade of LcMYB71 and LcNAC73 affects low-temperature and drought stress response in Lonicera caerulea

Author:

Zang Dandan,Sun Yan,Zhao Hengtian

Abstract

The development of stress tolerance is regulated via the transcriptional regulatory networks involving regulatory homeostasis mediated by protein–DNA interactions. LcNAC73 from Lonicera caerulea was characterized to understand the underlying mechanism of low-temperature and drought stress response in L. caerulea. To better understand the transcription pathway of LcNAC73, we cloned the promoter and screened proteins that could interact with the promoter. Using Yeast one-hybrid, electrophoretic mobility shift, and chromatin immunoprecipitation assays, we found that the LcMYB71 protein specifically bound to the promoter of LcNAC73. The transient transformation and stable transgenic system were used to produce transgenic L. caerulea plants with overexpressed and silenced LcNAC73, elucidating the effect of LcNAC73 on low-temperature and drought stress tolerance. LcNAC73 positively regulated the proline content and enhanced the scavenging of reactive oxygen species, thus improving tolerance to low-temperature and drought stress. Further studies revealed that LcMYB71 and LcNAC73 had similar functions and could improve plant low-temperature and drought tolerance. It is necessary to identify the upstream regulators of a specific gene to characterize gene functions and the associated transcriptional pathways.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3