Ultra-high-resolution UAV-imaging and supervised deep learning for accurate detection of Alternaria solani in potato fields

Author:

Wieme Jana,Leroux Sam,Cool Simon R.,Van Beek Jonathan,Pieters Jan G.,Maes Wouter H.

Abstract

Alternaria solani is the second most devastating foliar pathogen of potato crops worldwide, causing premature defoliation of the plants. This disease is currently prevented through the regular application of detrimental crop protection products and is guided by early warnings based on weather predictions and visual observations by farmers. To reduce the use of crop protection products, without additional production losses, it would be beneficial to be able to automatically detect Alternaria solani in potato fields. In recent years, the potential of deep learning in precision agriculture is receiving increasing research attention. Convolutional Neural Networks (CNNs) are currently the state of the art, but also come with challenges, especially regarding in-field robustness. This stems from the fact that they are often trained on datasets that are limited in size or have been recorded in controlled environments, not necessarily representative of real-world settings. We collected a dataset consisting of ultra-high-resolution modified RGB UAV-imagery of both symptomatic and non-symptomatic potato crops in the field during various years and disease stages to cover the great variability in agricultural data. We developed a convolutional neural network to perform in-field detection of Alternaria, defined as a binary classification problem. Our model achieves a similar accuracy as several state-of-the-art models for disease detection, but has a much lower inference time, which enhances its practical applicability. By using training data of three consecutive growing seasons (2019, 2020 and 2021) and test data of an independent fourth year (2022), an F1 score of 0.93 is achieved. Furthermore, we evaluate how different properties of the dataset such as its size and class imbalance impact the obtained accuracy.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3