Detection of a Potato Disease (Early Blight) Using Artificial Intelligence

Author:

Afzaal HassanORCID,Farooque Aitazaz A.,Schumann Arnold W.,Hussain Nazar,McKenzie-Gopsill AndrewORCID,Esau Travis,Abbas FarhatORCID,Acharya Bishnu

Abstract

This study evaluated the potential of using machine vision in combination with deep learning (DL) to identify the early blight disease in real-time for potato production systems. Four fields were selected to collect images (n = 5199) of healthy and diseased potato plants under variable lights and shadow effects. A database was constructed using DL to identify the disease infestation at different stages throughout the growing season. Three convolutional neural networks (CNNs), namely GoogleNet, VGGNet, and EfficientNet, were trained using the PyTorch framework. The disease images were classified into three classes (2-class, 4-class, and 6-class) for accurate disease identification at different growth stages. Results of 2-class CNNs for disease identification revealed the significantly better performance of EfficientNet and VGGNet when compared with the GoogleNet (FScore range: 0.84–0.98). Results of 4-Class CNNs indicated better performance of EfficientNet when compared with other CNNs (FScore range: 0.79–0.94). Results of 6-class CNNs showed similar results as 4-class, with EfficientNet performing the best. GoogleNet, VGGNet, and EfficientNet inference time values ranged from 6.8–8.3, 2.1–2.5, 5.95–6.53 frames per second, respectively, on a Dell Latitude 5580 using graphical processing unit (GPU) mode. Overall, the CNNs and DL frameworks used in this study accurately classified the early blight disease at different stages. Site-specific application of fungicides by accurately identifying the early blight infected plants has a strong potential to reduce agrochemicals use, improve the profitability of potato growers, and lower environmental risks (runoff of fungicides to water bodies).

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Pesticide Use in U.S. Agriculture: 21 Selected Crops, 1960-2008

2. Potential of precision farming with potatoes;McKenzie,2006

3. Compendium of Potato Diseases;Franc,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3