Integrative Study Supports the Role of Trehalose in Carbon Transfer From Fungi to Mycotrophic Orchid

Author:

Ponert Jan,Šoch Jan,Vosolsobě Stanislav,Čiháková Klára,Lipavská Helena

Abstract

Orchids rely on mycorrhizal symbiosis, especially in the stage of mycoheterotrophic protocorms, which depend on carbon and energy supply from fungi. The transfer of carbon from fungi to orchids is well-documented, but the identity of compounds ensuring this transfer remains elusive. Some evidence has been obtained for the role of amino acids, but there is also vague and neglected evidence for the role of soluble carbohydrates, probably trehalose, which is an abundant fungal carbohydrate. We therefore focused on the possible role of trehalose in carbon and energy transfer. We investigated the common marsh orchid (Dactylorhiza majalis) and its symbiotic fungus Ceratobasidium sp. using a combination of cultivation approaches, high-performance liquid chromatography, application of a specific inhibitor of the enzyme trehalase, and histochemical localization of trehalase activity. We found that axenically grown orchid protocorms possess an efficient, trehalase-dependent, metabolic pathway for utilizing exogenous trehalose, which can be as good a source of carbon and energy as their major endogenous soluble carbohydrates. This is in contrast to non-orchid plants that cannot utilize trehalose to such an extent. In symbiotically grown protocorms and roots of adult orchids, trehalase activity was tightly colocalized with mycorrhizal structures indicating its pronounced role in the mycorrhizal interface. Inhibition of trehalase activity arrested the growth of both symbiotically grown protocorms and trehalose-supported axenic protocorms. Since trehalose constitutes only an inconsiderable part of the endogenous saccharide spectrum of orchids, degradation of fungal trehalose likely takes place in orchid mycorrhiza. Our results strongly support the neglected view of the fungal trehalose, or the glucose produced by its cleavage as compounds transported from fungi to orchids to ensure carbon and energy flow. Therefore, we suggest that not only amino acids, but also soluble carbohydrates are transported. We may propose that the soluble carbohydrates would be a better source of energy for plant metabolism than amino acids, which is partially supported by our finding of the essential role of trehalase.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3