Author:
Yannam Venkata Rami Reddy,Lopes Marta,Guzman Carlos,Soriano Jose Miguel
Abstract
The release of new wheat varieties is based on two main characteristics, grain yield and quality, to meet the consumer’s demand. Identifying the genetic architecture for yield and key quality traits has wide attention for genetic improvement to meet the global requirement. In this sense, the use of landraces represents an impressive source of natural allelic variation. In this study, a genome-wide association analysis (GWAS) with PCA and kinship matrix was performed to detect QTLs in bread wheat for fifteen quality and agronomic traits using 170 diverse landraces from 24 Mediterranean countries in two years of field trials. A total of 53 QTL hotspots containing 165 significant marker-trait associations (MTAs) were located across the genome for quality and agronomical traits except for chromosome 2D. The major specific QTL hotspots for quality traits were QTL_3B.3 (13 MTAs with a mean PVE of 8.2%) and QTL_4A.3 (15 MTAs, mean PVE of 11.0%), and for yield-related traits were QTL_2B.1 (8 MTAs, mean PVE of 7.4%) and QTL_4B.2 (5 MTAs, mean PVE of 10.0%). A search for candidate genes (CG) identified 807 gene models within the QTL hotspots. Ten of these CGs were expressed specifically in grain supporting the role of identified QTLs in Landraces, associated to bread wheat quality traits and grain formation. A cross-validation approach within the collection was performed to calculate the accuracies of genomic prediction for quality and agronomical traits, ranging from -0.03 to 0.64 for quality and 0.46 to 0.65 for agronomic traits. In addition, five prediction equations using the phenotypic data were developed to predict bread loaf volume in landraces. The prediction ability varied from 0.67 to 0.82 depending on the complexity of the traits considered to predict loaf volume.
Funder
Ministerio de Ciencia e Innovación
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献