Daytime and seasonal reflectance of maize grown in varying compass directions

Author:

Buchhart Claudia,Schmidhalter Urs

Abstract

High temporal and spatial resolution is required to meet the challenges of changing plant characteristics over time. Solar radiation and reflectance of vegetation canopies vary with the time of day and growing season. Little is known regarding the interactions between daily and seasonally varying irradiation and reflectance of row-planted crops that can be grown in any compass direction. The spectral reflectance of maize grown in four compass directions was recorded across the entire life cycle through highly frequent drone-based multispectral sensing to determine biomass changes over time and make early yield predictions. Comparison of information from spectral bands and indices indicated no differences among the four compass directions at the reproductive stage and only a few differences at the earlier vegetative growth stages. There was no systematic influence of row orientation on the relationships between spectral data, biomass, and grain yield, except at the early growth stages. Spectral relationships to biomass at the reproductive stage varied in row directions with R2-values close to 0.9, already observed at early growth stages for the indices NDVI, SR, GCI, and GNDVI. The spectral relationships to yield were closer in individual compass directions, with R2-values varying between 0.8–0.9 for the best indices GCI and GNDV after BBCH 61. A closer inspection of daytime changes indicated a diurnal trend with 15 and 20% decreased spectral values observed after midday at the growth stages BBCH 81 and 61, respectively, thus requiring standardization of flight timing during the day. Drone-assisted nadir-oriented spectral sensing could be a reference for terrestrial and satellite-based reflectance sensing to relate canopy reflectance to crop characteristics quantitatively.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3