Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene editing analysis in cotton

Author:

Zhou Lili,Wang Yali,Wang Peilin,Wang Chunling,Wang Jiamin,Wang Xingfen,Cheng Hongmei

Abstract

CRIPSR/Cas9 gene editing system is an effective tool for genome modification in plants. Multiple target sites are usually designed and the effective target sites are selected for editing. Upland cotton (Gossypium hirsutum L., hereafter cotton) is allotetraploid and is commonly considered as difficult and inefficient to transform, it is important to select the effective target sites that could result in the ideal transgenic plants with the CRISPR-induced mutations. In this study, Agrobacterium rhizogenes-mediated hairy root method was optimized to detect the feasibility of the target sites designed in cotton phytoene desaturase (GhPDS) gene. A. rhizogenes showed the highest hairy root induction (30%) when the bacteria were cultured until OD600 reached to 0.8. This procedure was successfully applied to induce hairy roots in the other three cultivars (TM–1, Lumian–21, Zhongmian–49) and the mutations were detected in GhPDS induced by CRISPR/Cas9 system. Different degrees of base deletions at two sgRNAs (sgRNA5 and sgRNA10) designed in GhPDS were detected in R15 hairy roots. Furthermore, we obtained an albino transgenic cotton seeding containing CRISPR/Cas9-induced gene editing mutations in sgRNA10. The hairy root transformation system established in this study is sufficient for selecting sgRNAs in cotton, providing a technical basis for functional genomics research of cotton.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3