Dissimilar gene repertoires of Dickeya solani involved in the colonization of lesions and roots of Solanum tuberosum

Author:

Robic Kévin,Munier Euphrasie,Effantin Géraldine,Lachat Joy,Naquin Delphine,Gueguen Erwan,Faure Denis

Abstract

Dickeya and Pectobacterium species are necrotrophic pathogens that macerate stems (blackleg disease) and tubers (soft rot disease) of Solanum tuberosum. They proliferate by exploiting plant cell remains. They also colonize roots, even if no symptoms are observed. The genes involved in pre-symptomatic root colonization are poorly understood. Here, transposon-sequencing (Tn-seq) analysis of Dickeya solani living in macerated tissues revealed 126 genes important for competitive colonization of tuber lesions and 207 for stem lesions, including 96 genes common to both conditions. Common genes included acr genes involved in the detoxification of plant defense phytoalexins and kduD, kduI, eda (=kdgA), gudD, garK, garL, and garR genes involved in the assimilation of pectin and galactarate. In root colonization, Tn-seq highlighted 83 genes, all different from those in stem and tuber lesion conditions. They encode the exploitation of organic and mineral nutrients (dpp, ddp, dctA, and pst) including glucuronate (kdgK and yeiQ) and synthesis of metabolites: cellulose (celY and bcs), aryl polyene (ape), and oocydin (ooc). We constructed in-frame deletion mutants of bcsA, ddpA, apeH, and pstA genes. All mutants were virulent in stem infection assays, but they were impaired in the competitive colonization of roots. In addition, the ΔpstA mutant was impaired in its capacity to colonize progeny tubers. Overall, this work distinguished two metabolic networks supporting either an oligotrophic lifestyle on roots or a copiotrophic lifestyle in lesions. This work revealed novel traits and pathways important for understanding how the D. solani pathogen efficiently survives on roots, persists in the environment, and colonizes progeny tubers.

Funder

Conseil National de la Recherche Scientifique

Agence Nationale de la Recherche

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3