Antifungal activity of volatile organic compounds from essential oils against the postharvest pathogens Botrytis cinerea, Monilinia fructicola, Monilinia fructigena, and Monilinia laxa

Author:

Álvarez-García Samuel,Moumni Marwa,Romanazzi Gianfranco

Abstract

Gray mold and brown rot, caused respectively by Botrytis cinerea and Monilinia spp., are fungal diseases responsible for significant losses during the storage of fruit and vegetables. Nowadays, the control of postharvest diseases is shifting towards more sustainable strategies, including the use of plant secondary metabolites. In this study, the antifungal activity of Origanum vulgare, Thymus vulgaris, Thymus serpyllum, Melaleuca alternifolia, Lavandula officinalis, Lavandula hybrida, Citrus bergamia, Rosmarinus officinalis, Cinnamomum zeylanicum essential oils (EOs) in vapor phase was tested in vitro against B. cinerea, Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. For the experiments, a protocol using a volatile organic compounds (VOC) chamber was designed. Results indicate a dose-dependent inhibitory activity of all the tested EOs, with O. vulgare, T. vulgaris, and T. serpyllum being the most active ones, with minimum inhibitory concentrations (MIC) of 22.73, 45.45, and 22.73 µl/L, respectively, against B. cinerea and a range between 5.64 and 22.73 µl/L against the three Monilinia spp. Overall, B. cinerea presented lower sensitivity to vapor-phase EOs than any of the Monilinia strains, except for the C. zeylanicum EO, which consistently showed higher inhibition against B. cinerea. Among the three Monilinia spp., M. fructicola was the least sensitive, while M. fructigena was the most sensitive. The use of VOC chambers proved to be a reliable protocol for the assessment of antimicrobial activities of EOs. These results suggest that the VOC emitted by the tested EOs are effective towards important decay-causing fungi, and that they could be used for the control of gray mold and brown rot in in vivo trials.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3