Regulation of Growth and Main Health-Promoting Compounds of Chinese Kale Baby-Leaf by UV-A and FR Light

Author:

He Rui,Li Yamin,Ou Shuying,Gao Meifang,Zhang Yiting,Song Shiwei,Liu Houcheng

Abstract

Chinese kale baby leaves were hydroponically cultured under the basal light (Red: white LEDs = 2:3 at PPFD of 250 μmol·m−2·s−1) with different supplemental lighting, including individual ultraviolet-A (UV-A, 380 ± 10 nm, 20 μmol·m−2·s−1), far-red (FR, 735 ± 10 nm, 30 μmol·m−2·s−1) light, and their combination (UF) radiation in an artificial light plant factory. Effects of supplemental light qualities on morphology and physiology as well as health-promoting compounds of Chinese kale baby leaves were investigated. Application of UV-A and FR presented a positive effect on biomass, with a pronounced increase in petiole length, stem diameter, main stem length, and leaf area. Notably, plants under UF grew more vigorously than under other treatments. Higher levels of FRAP, vitamin C, total phenolic, and flavonoid were observed in plants under UV-A, while no striking changes or a decreasing trend recorded under FR and UF. Moreover, UV-A enhanced the glucosinolates (GLs) accumulation in Chinese kale baby leaves by increasing the predominant GLs (glucoraphanin and glucobrassicin) contents. RT-qPCR results indicated that UV-A upregulated the gene expressions of transcription factors and core structure genes related to GLs biosynthesis. However, downregulated or unchanged gene expressions of GLs biosynthesis-related genes in Chinese kale baby leaves were observed in FR and UF. Therefore, UV-A was benefited for the production of functional substances, while FR was conducive to a significant increase in crop yield. The combination of UV-A and FR, as a balance between yield and production of secondary metabolite, provided a new perspective for the application of artificial light in horticultural crop production.

Funder

Special Project for Research and Development in Key areas of Guangdong Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3