Living yeast-based biostimulants: different genes for the same results?

Author:

Chambard Marie,Albert Benjamin,Cadiou Mickaël,Auby Sarah,Profizi Camille,Boulogne Isabelle

Abstract

Nowadays, many products are available in the plant biostimulants market. Among them, living yeast-based biostimulants are also commercialized. Given the living aspect of these last products, the reproducibility of their effects should be investigated to ensure end-users’ confidence. Therefore, this study aimed to compare the effects of a living yeast-based biostimulant between two different soybean cultures. These two cultures named C1 and C2 were conducted on the same variety and soil but in different locations and dates until the VC developmental stage (unifoliate leaves unrolled), with Bradyrhizobium japonicum (control and Bs condition) and with and without biostimulant coating seed treatment. The foliar transcriptomic analysis done first showed a high gene expression difference between the two cultures. Despite this first result, a secondary analysis seemed to show that this biostimulant led to a similar pathway enhancement in plants and with common genes even if the expressed genes were different between the two cultures. The pathways which seem to be reproducibly impacted by this living yeast-based biostimulant are abiotic stress tolerance and cell wall/carbohydrate synthesis. Impacting these pathways may protect the plant from abiotic stresses and maintain a higher level of sugars in plant.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference77 articles.

1. Ameliorative effects of abscisic acid and yeast on morphological and yield characteristics of maize plant (Zea mays l.) under water deficit conditions;Abdelaal;Fresenius Environ. Bull.,2017

2. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update;Afgan;Nucleic Acids Res.,2016

3. Effects of NaCl on root growth and cell wall composition of two soya bean cultivars with contrasting salt tolerance;An;J. Agron. Crop Sci.,2014

4. HTSeq–a Python framework to work with high-throughput sequencing data;Anders;Bioinformatics.,2015

5. Dynamic construction, perception, and remodeling of plant cell walls;Anderson;Annu. Rev. Plant Biol.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3