Rapid determination of the total content of oleanolic acid and ursolic acid in Chaenomelis Fructus using near-infrared spectroscopy

Author:

Ming Jing,Liu Mingjia,Lei Mi,Huang Bisheng,Chen Long

Abstract

Chaenomelis Fructus is a widely used traditional Chinese medicine with a long history in China. The total content of oleanolic acid (OA) and ursolic acid (UA) is taken as an important quality marker of Chaenomelis Fructus. In this study, quantitative models for the prediction total content of OA and UA in Chaenomelis Fructus were explored based on near-infrared spectroscopy (NIRS). The content of OA and UA in each sample was determined using high-performance liquid chromatography (HPLC), and the data was used as a reference. In the partial least squares (PLS) model, both leave one out cross validation (LOOCV) of the calibration set and external validation of the validation set were used to screen spectrum preprocessing methods, and finally the multiplicative scatter correction (MSC) was chosen as the optimal pretreatment method. The modeling spectrum bands and ranks were optimized using PLS regression, and the characteristic spectrum range was determined as 7,500–4,250 cm−1, with 14 optimal ranks. In the back propagation artificial neural network (BP-ANN) model, the scoring data of 14 ranks obtained from PLS regression analysis were taken as input variables, and the total content of OA and UA reference values were taken as output values. The number of hidden layer nodes of BP-ANN was screened by full-cross validation (Full-CV) of the calibration set and external validation of the validation set. The result shows that both PLS model and PLS-BP-ANN model have strong prediction ability. In order to evaluate and compare the performance and prediction ability of models, the total content of OA and UA in each sample of the test set were detected under the same HPLC conditions, the NIRS data of the test set were input, respectively, to the optimized PLS model and PLS-BP-ANN model. By comparing the root-mean-square error (RMSEP) and determination coefficient (R2) of the test set and ratio of performance to deviation (RPD), the PLS-BP-ANN model was found to have better performance with RMSEP of 0.59 mg·g−1, R2 of 95.10%, RPD of 4.53 and bias of 0.0387 mg·g−1. The results indicated that NIRS can be used for the rapid quality control of Chaenomelis Fructus.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3